
Unicode
Encoding Forms

Which one do I choose? 🤔

Why are there so many? 🤔

What happened to the text? 🤔

Let’s start from the beginning

Once upon a time, when life was simpler
(for Americans), we had ASCII

ASCII
• Designed for teleprinters in the 1960s

• 7 bit (0000000 to 1111111 in binary)

• 128 codes (0 to 127 in decimal)

0 1 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 1

A

B

C

(65 in decimal)

(66 in decimal)

(67 in decimal)

Why waste this 1 bit?

0 1 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 1

A

B

C

(65 in decimal)

(66 in decimal)

(67 in decimal)

Meanwhile, 8-bit byte were becoming common

(aka,128 more spaces for characters)

🤔

Everyone had the same idea-

Let’s Extend ASCII

And use all those 256 characters

Let there be… chaos! 😈

Code Pages
• There are too many (more than 220 DOS and Windows

code pages alone)

• IBM, Apple all introduced their own “code pages” 🤛 🤜

• Side-note: ANSI character set has no well-defined
meaning, they are a collection of 8-bit character sets
compatible with ASCII but incompatible with each other

Problems
• Most are compatible with ASCII but incompatible with

each other

• Programs need to know what code page to use in order
to display the contents correctly

• Files created on one machine may be unreadable on
another

• Even 256 characters are not enough %

Internet happened!
And also

🔥

Fax machines were not enough anymore.

Unicode

🕴
to the rescue

Unicode
• Finally everyone agreed on what code point mapped to

what character 🎉 

• There’s room for over 1 million code points (characters),
though the majority of common languages fit into the first
65536 code points

How do we serialize multi-
byte characters? 

💾

“Character Encoding”

UTF-32
• Simplest encoding

• Unicode supports 1,114,112 code points. We can store
them using 21 bits

• UTF-32 is 32-bit in length. Fixed length encoding

• So we take a 21-bit value and simply zero-pad the value
out to 32 bits

UTF-32
• Example 

A in ASCII 01000001 
A in UTF-32 00000000 00000000 00000000 01000001 
or, 01000001 00000000 00000000 00000000

• So, not compatible with ASCII

• Super wasteful

• But faster text operations (e.g character count)

• Messes where “null terminated strings” (00000000) are
expected

UTF-32
• Also, now we have to deal with “Endianness” 🤔 

 
 00000000 00000000 00000000 01000001 
 vs, 
 01000001 00000000 00000000 00000000

Endianness
• Big endian machine: Stores data big-end first. When looking at

multiple bytes, the first byte is the biggest 
 
increasing addresses ———-> 
00000000 00000000 00000000 01000001

• Little endian machine: Stores data little-end first. When looking at
multiple bytes, the first byte is smallest 
 
increasing addresses ———->  
01000001 00000000 00000000 00000000

• Endianness does not matter if you have a single byte, because
how we read a single byte is same in all machines 😌

UTF-16
• The oldest encoding for Unicode. Often mislabeled as

"Unicode encoding”

• Variable length encoding. 2 bytes for most common
characters (BMP), 4 bytes for everything else

• The most common characters (BMP) in Unicode fits into first
65,536 code points, so it’s straightforward. Throw away top 5
zeros from 21 bit, you get UTF-16. 
A 00000 00000000 01000001 (21 bit) becomes- 
A 00000000 01000001 (16 bit)

• Uses “Surrogate pairs” for other characters

UTF-16
• Multi-byte encoding, so has Endianness like UTF-32

• Incompatible with ASCII 
A in UTF-16 00000000 01000001 
A in ASCII 01000001

• Incompatible with old systems that rely on null (null byte:
00000000) terminated strings

• Uses less space than UTF-32 in practice

• Windows API, .NET and Java environments are founded on
UTF-16, often called “wide character string”

UTF-8
• Nice & simple. This is the kid that everyone loves *

• Backward compatible with ASCII 🙌

• 0 to 127 code points are stored as regular, single-byte
ASCII. 
A in ASCII 01000001 
A in UTF-8 01000001

* UTF-8 Everywhere Manifesto: https://utf8everywhere.org/

https://utf8everywhere.org/

UTF-8
• Code points 128 and above are converted to binary and

stored (encoded) in a series of bytes 
 
A 2-byte example looks like this 
 
110xxxxx 10xxxxxx  
 
 
 
 
In contrast, single byte ASCII characters (<128 decimal
code points) look like 0xxxxxxx

Count byte 
Starts with  

11..0 

Data byte 
Starts with 

10

UTF-8
• A 2-byte example looks like this 

110xxxxx 10xxxxxx 
(Count Byte) (Data Byte)

• The first count byte indicates the number of bytes for the code-point,
including the count byte. These bytes start with 11..0: 
110xxxxx (The leading “11” is indicates 2 bytes in sequence, including the
“count” byte) 
 
1110xxxx (1110 -> 3 bytes in sequence) 
 
11110xxx (11110 -> 4 bytes in sequence)

• After count bytes, data bytes starting with 10… and contain information
for the code point 

UTF-8
• Example:  
অ 'BENGALI LETTER A' (U+0985) 
Binary form: 00001001 10000101 
 
 0000 100110 000101 
UTF-8 form: 11100000 10100110 10000101 

• Variable length encoding. Uses more space than UTF-16
for text with mostly Asian characters (2 bytes vs 3 bytes),
less space than UTF-16 for text with mostly ASCII
characters (1 byte vs 2 bytes)

UTF-8
• No null bytes. Old programs work just fine that treats null

bytes (00000000) as end of string

• We read and write a single byte at a time, so no worry of
Endianness. This is very convenient

• UTF-8 is the encoding you should use if you work on web

How does Notepad know which encoding was used when it opens a file?

BOM 
(Byte Order Mask)

BOM Encoding

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

FE FF UTF-16, big-endian

FF FE UTF-16, little-endian

EF BB BF UTF-8

How do browsers know which encoding was used when it opens a page?

HTTP Content-Type Header

Meta tag

Otherwise, browsers try to “guess” if these information are not present

Practical Considerations
• If you are working on web, use UTF-8

• If your operation is mostly with GUI and calling windows APIs with Unicode
string, use UTF-16

• UTF-16 takes least space than UTF-8 and UTF-16 if most characters are
Asian

• UTF-8 takes least space if most characters are Latin

• If memory is cheap and you need fastest operation, random access to
characters etc, use UTF-32

• If dealing with Endianness & BOM is a problem, then use UTF-8

• When in doubt, use UTF-8 😛

https://avro.im/utf.pdf

https://avro.im/utf.pdf

